Os dados são o combustível que alimenta a Inteligência Artificial. Quanto melhores, maior a chance da tecnologia dar bons resultados e insights. O ponto pro Brasil é que, segundo a pesquisa da Cisco, 72% dos dados das empresas brasileiras estão em silos, o que atrapalha diretamente esse usufruto – a gestão de dados para IA.
Naturalmente, não temos também como falar de questões sensíveis e que batem na ética e na responsabilidade sem falar de governança. E outro número que chama atenção é que apenas 47% das organizações daqui contam com políticas abrangentes de IA.
Desafios na Gestão de Dados
-
Dados em Silos:
A falta de centralização de dados impede que as ferramentas de IA acessem todas as informações necessárias, resultando em análises fragmentadas e decisões baseadas em dados incompletos (e, portanto, incorretos).
-
Qualidade dos Dados:
Dados imprecisos ou incompletos podem levar a resultados de IA pouco confiáveis. A Accenture revela que 60% das empresas enfrentam desafios significativos na manutenção da qualidade dos dados.
-
Segurança e Privacidade:
Proteger os dados contra acessos não autorizados é fundamental para manter a confiança dos clientes e conformidade regulatória. A IBM relata que o custo médio de uma violação de dados no Brasil é de US$ 1,35 milhão.
Melhores Práticas para Gestão de Dados
-
Centralização de Dados:
Implemente uma estratégia de centralização para facilitar o acesso e a análise de dados. Empresas que centralizam seus dados são 3 vezes mais propensas a maximizar suas iniciativas de IA.
-
Ferramentas de Análise:
Utilize ferramentas de análise avançada que integrem dados de várias fontes, melhorando a precisão das previsões e análises de IA.
-
Governança de Dados:
Estabeleça políticas claras para garantir a precisão, segurança e privacidade dos dados. A Deloitte descobriu que empresas com forte governança de dados têm 33% mais chances de sucesso em suas iniciativas de IA.
Desafios de Governança na IA
-
Viés e Equidade:
A IA pode perpetuar vieses existentes se não for adequadamente monitorada. Estudos mostram que 17% das organizações têm pouca ou nenhuma consciência sobre vieses nos conjuntos de dados.
-
Privacidade de Dados:
A proteção dos dados pessoais é essencial para manter a confiança e cumprir regulamentações. No Brasil, a Lei Geral de Proteção de Dados (LGPD) exige que as empresas implementem medidas rigorosas para proteger os dados dos usuários.
-
Transparência:
É importante que as decisões tomadas por IA sejam transparentes e explicáveis. Apenas 30% das empresas têm mecanismos para garantir a transparência nas decisões de IA, segundo a Cisco.
Componentes de uma Boa Governança de IA
-
Políticas e Protocolos:
Desenvolva políticas abrangentes que cubram todos os aspectos da utilização de IA, incluindo diretrizes para coleta, armazenamento e uso de dados, bem como para o desenvolvimento e implantação de algoritmos de IA.
-
Detecção e Correção de Viés:
Implemente mecanismos para detectar e corrigir vieses nos dados e nos modelos de IA. Organizações que monitoram e corrigem sistematicamente vieses têm 25% mais probabilidade de sucesso em suas iniciativas de IA.
-
Conformidade Regulatória:
Garanta que suas práticas de IA estejam em conformidade com as regulamentações locais e internacionais. A conformidade com a LGPD, por exemplo, é fundamental para evitar multas e preservar a reputação da empresa.